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Abstract—Cartoon animation video is a popular visual entertainment form worldwide, however many classic animations were produced
in a 4:3 aspect ratio that is incompatible with modern widescreen displays. Existing methods like cropping lead to information loss
while retargeting causes distortion. Animation companies still rely on manual labor to renovate classic cartoon animations, which is
tedious and labor-intensive, but can yield higher-quality videos. Conventional extrapolation or inpainting methods tailored for natural
videos struggle with cartoon animations due to the lack of textures in anime, which affects the motion estimation of the objects. In this
paper, we propose a novel framework designed to automatically outpaint 4:3 anime to 16:9 via region-guided motion inference. Our core
concept is to identify the motion correspondences between frames within a sequence in order to reconstruct missing pixels. Initially, we
estimate optical flow guided by region information to address challenges posed by exaggerated movements and solid-color regions in
cartoon animations. Subsequently, frames are stitched to produce a pre-filled guide frame, offering structural clues for the extension of
optical flow maps. Finally, a voting and fusion scheme utilizes learned fusion weights to blend the aligned neighboring reference frames,
resulting in the final outpainting frame. Extensive experiments confirm the superiority of our approach over existing methods.

Index Terms—Cartoon animations, video outpainting, optical flow, deep learning.
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1 INTRODUCTION

ANIME is a worldwide popular visual entertainment
and art form with significant market demand. Though

many new titles have been created, there are still a large
amount of legacy and classic animations popular and
enjoyed by audiences. However, the old cartoon animations
were usually produced in 4:3 aspect ratio resolutions, which
do not match the commonly used 16:9 aspect ratio or
even wider screens at present. To display a classic 4:3
cartoon animation video on a wider screen, the animation
is typically placed at the center of the screen, with two wide
black stripes on the left and right sides, respectively(Fig. 1
(a)). This significantly harms the visual experiences of the
audience.

To provide a visually pleasing experience, it is necessary
to remove the two wide black stripes and display the
cartoon animation in the full screen area. To do so, a
straightforward approach is to crop and stretch a 16:9
rectangular area in the 4:3 animation. However, cropping
may lead to evident information loss (Fig. 1 (b)). Retargeting
the cartoon animation frames from 4:3 to 16:9 (Fig. 1
(c)) may lead to distortion of the content, even with the
state-of-the-art retargeting methods [1]–[5]. Therefore, the

Huisi Wu (hswu@szu.edu.cn), Hao Meng, Xueting Liu and Zhenkun Wen
are with the College of Computer Science and Software Engineering, Shenzhen
University, 518060, Shenzhen, Guangdong, China.
Chengze Li is with the School of Computing and Information Sciences, Caritas
Institute of Higher Education, Hong Kong, China.
Tong-Yee Lee is with the Department of Computer Science and Information
Engineering, National Cheng-Kung University, Taiwan, R.O.C.
This work was supported partly by National Natural Science Foundation
of China (No. 62002232 and No. 62273241), the Research Grants Council
of the Hong Kong Special Administrative Region, China (Project No.
UGC/FDS11/E03/22), and the National Science and Technology Council
under nos. 111-2221-E-006-112-MY3, Republic of China (ROC), Taiwan.

Fig. 1. Various approaches to extend the field-of-view.

animation companies still rely on manual labor to remake
the classic anime videos, such as the movie of Monkey King,
Ronin Warriors, and Fullmetal Alchemist. As the artists will
preserve the original content and paint out the content on
the two sides that originally do not exist, the quality of the
output is significantly better than cropping or retargeting.

Nonetheless, manually outpainting a cartoon animation
is extremely tedious and labor-intensive. An automatic



2

Fig. 2. Existing optical flow estimation methods on cartoon animations.
The existing motion estimation methods tailored for natural videos
generally cannot work well in cartoon animations.

cartoon animation outpainting method is highly in demand.
However, such a task is not easy. Firstly, the outpainted
cartoon animations frames should be temporally smooth
and consistent for visual pleasantness. This suggests that
the content to be outpainted at the two sides should be
guided by not only the current frame, but the neighboring
frames as well. Secondly, the movement of objects in
cartoon animations may be exaggerated and not obey the
physical laws, therefore, the existing motion estimation
methods tailored for natural videos generally cannot work
well in cartoon animations [6], [7] (Fig. 2). Finally, cartoon
animations frequently use solid-color regions to depict
objects, leading to a general fact of lack of texture, which
further complicates the motion estimation and makes
existing natural video tailored methods unsuccessful. As
shown in Fig. 2, the existing methods are quite error-prone
when handling solid-color regions which are quite common
in cartoon animations.

In this paper, to resolve the mentioned problems, we
propose a novel cartoon animation outpainting framework
via a deep learning approach with motion inference. The key
idea of our method is to find the motion correspondences
of a cartoon animation frame against a long sequence of
neighbor frames in the video so that we can have as much
information as possible to reconstruct the missing pixels on
the two sides of the cartoon animations. Then all frames are
warped and aligned to this frame so that the information
from different frames can be integrated for the outpainting.
Therefore, our system is designed to have three stages.
In the first stage, we propose to estimate the motion of
the objects via optical flow estimation. Since the existing
optical flow methods are error-prone due to the lack of
textures in cartoon animations, we novelly propose to adopt
the guidance of regions in optical flow estimation. With
the guidance of regions, our method can well handle the
optical flow in flat-color regions. In the second stage, we
stitch the frames in sequence to produce a pre-filled guide
frame. This guidance frame can provide structural clues to
extend the field of view of the optical flow maps from 4:3
to 16:9. After the reconstructed 16:9 optical flows, in the
third stage, we align all neighbor frames in the sequence
to this frame to form a series of reference frames. Finally,
the reference frames are blended with a novel voting and
fusion scheme where the fusion weights are generated by
a deep learning network with a stacked channel attention

module. Extensive experiments have been conducted to
validate the effectiveness of our method (Fig. 1 (f)). The main
contributions of this paper are summarized as follows:

• We propose a novel cartoon animation outpainting
framework based on region-guided motion
inference. Remarkably, our proposed method is
totally different from traditional retargeting methods
to enlarge the input video.

• Due to the lack of texture, we proposed a novel
cartoon animation tailored optical flow estimation
method guided by regions.

• We propose the voting and fusion scheme to outpaint
the missing pixels based on the estimated optical
flow.

2 RELATED WORK

In this section, we study the related work to our task. We
mainly categorize them into three approaches and briefly
describe them in this session.

2.1 Image and Video Retargeting
Image and video retargeting are the technologies used to
adaptively change the aspect ratio of images and video
content based on viewing devices [5], [8]–[10]. For image
retargeting, it is required to preserve the structural features
of the subject as much as possible during the change of
aspect ratio. Seam carving [11] is one of the most widely
used methods for image retargeting, but it is difficult to
achieve consistent deformation across multiple frames of
the video. Moreover, it is hard to find a good energy
function to estimate the structure of cartoon animations.
Cho et al. [12] proposed a CNN-based image retargeting
method to determine the important part of the image and
ensure the content is remaining in the output through a
pre-trained classification module. Tan et al. [9] proposed to
generate both narrow and enlarged results at the same time
and gradually optimize by keeping the results consistent
across multiple iterations. All three methods above are
image-based without the capability to maintain temporal
consistency for videos. To deal with video, Cho and
Kang [13] proposed a foreground-aware video extrapolation
method with dynamic sensing of the foreground to extend
the video boundary. It reduced the unpleasant deformation
during the retargeting process and maintained temporal
consistency. Yan et al. [5] constructed a new energy function
that considered both spatial and temporal constraints in
video retargeting. Kim et al. [14] proposed a deep neural
network model that can aggregate temporal features while
maintaining temporal consistency. This model can be used
for fast video inpainting and video retargeting tasks.
Although video retargeting methods can change the aspect
ratio of video contents with flexibility, they usually result
in uneven content scaling [13]–[16]. In contrast, we aim to
preserve the composition of the original cartoon animations
within the 4:3 field-of-view.

2.2 Video Inpainting
Video inpainting aims to repair the missing areas
in the video while maintaining temporal and spatial
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consistency [17]–[22]. Their inference of the image-level
content is usually from the hole’s surrounding pixels, while
the temporal consistency is generally maintained through
optical flow estimation and maintenance. For example, Xu et
al. [19] used a coarse-to-fine strategy to refine optical flow in
hole area, then used optical flow to guide the propagation of
pixels between frames. Gao et al. [23] extracted and repaired
the line information in the optical flow to generate a sharper
motion boundary to contribute a higher quality result
through non-local pixel propagation. Some methods used
the attention mechanism to capture the frame correlations.
For example, Onion-Peel Network [24] used pixel-level
attention to fill holes in the video gradually. Lee et al. [21]
used the attention between frames to align and fuse the
content of multiple frames to obtain the content in the hole.
STTN [22] introduced the transformer model to encode the
temporal and spatial information of the video sequence to
achieve the balance of performance and efficiency. Some
methods formulated video inpainting as a constrained
image generation problem and used GANs to generate
the content of the missing regions. For example, Chang et
al. [25] used temporal SN-PatchGAN [26] and temporal-shift
modules to repair irregular-shaped masks. E2FGVI [27]
proposed an end-to-end optical flow-based video inpainting
method by applying optical flow warps to image features
and embedding them in the network. FGT [28] proposed a
new flow-guided Transformer method that used the motion
differences of optical flow to guide attention retrieval
and achieve high-fidelity video restoration with improved
efficiency through window partitioning strategies and flow
weighting modules. Although these methods have achieved
good results in video inpainting, the solid-color region in
cartoon animation videos often lead to the failure of optical
flow estimation and the confusion of motion boundaries.
It brings difficulties to these methods in cartoon animation
video. This paper proposes an image enhancement method
that can improve the performance of optical flow models
trained on natural image data when applied to cartoon
animation videos.

Additionally, there were a few works dedicated to image
inpainting in the cartoon field, such as Seamless Manga
Inpainting [29], which inpainted bubbles in comics by
decomposing the comic and inpainting the layers separately
before merging them. However, it is targeted for manga
images, which are still very different from cartoon images.
The open source project Anime Inpainting [30] used an
edge connection [31] model retrained with a cartoon dataset
to perform inpainting of anime characters. However, the
Edge-Connection model was designed for natural image
inpainting, so it was difficult to address the target area
of cartoon animation outpainting, and it was also difficult
to achieve temporal consistency requirements. Sketch-based
Hairstyle Editing [32] focused on inpainting and editing the
hairstyle of anime characters based on sketch lines, but it
was difficult to cope with the various application scenarios
of cartoon animation. These methods provide special
optimization ideas for manga or cartoon images, but they
are all challenging to use for the task of cartoon animation
outpainting since all of these method were tailored for
inpainting task instead of outpainting. For inpainting tasks,
surrounding information could be utilized to fill in the

pixels of a hole, while neighboring information of the sides
is less useful. This is mainly because the information to
support outpainting is much less than hole-filling. With the
extension of the outpainting boundaries, these models will
become less and less confident in recovering the contents.

2.3 Video Extrapolation and outpainting
The task of video extrapolation is to use a given video
sequence to predict the peripheral information of the
sequence that has not yet appeared in the video [33],
[34], or outside the visible area of the video. To extend
to a wider field of view with a given video, the method
of [35]–[37] used blurred pixels to fill the surrounding area
of the video content. This method was effective under the
visual assumption that the viewer’s sight would not deviate
from the main screen. However, some studies have shown
that viewers were more inclined to look around when
viewing wide-field content [38]. Based on this consideration,
the surrounding area of wide-field content should still
require a filling of visually natural content. Lee et al. [21]
used the 3D scene information recovered from the video
to guide the sampling and blending of different frames
regions. The surrounding area was filled with image blocks
obtained from neighboring frames. Ma et al. [39] also
used 3D scene information to expand the field of view
while introducing the attention mechanism and uncertainty
analysis to improve the accuracy of the results and enable
the results to meet the requirements of downstream tasks.
Dehan et al. [40] processed the foreground and background
of the video separately, so they obtained good outpainting
results for the background area. However, they still resulted
in unbearable dissonance when dealing with foreground
objects moving to the boundary. And the extrapolated
optical flow based on the constant gradient also doesn’t
have fine-grain motion information.

This category of research is considered closest to our
objective. However, these methods are tailored for natural
videos and usually require a very precise estimation of
camera motion and object locations. They do not allow
apparent object motions across frames to minimize the
mismatch in frame warping and blending. Unfortunately, in
cartoons with hand-drawn content, we cannot obtain precise
camera parameters or 3D reconstruction of objects, thus the
existing solutions generally fail when applied on cartoons
and animations.

3 METHODOLOGY

In this work, we propose to solve the challenge of
field-of-view (FOV) outpainting in cartoon animations using
deep learning. The key motivation is to find motion
correspondences of frame Si at time i against its neighbor
frames in the sequence S and align these frames with time i
by motion-based warping. Due to camera and object motion,
those pixels that do not appear in Si may present in the
other frames in S . Suppose that these pixels are warped
outside the original 4:3 FOV of Si after alignment; they shall
contain additional information than Si. Thus, we can blend
them to construct a much wider FOV of the input.

To collect these useful pixels scattered in other frames,
some methods like [21], [22], [24], [41] use neural network
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Fig. 3. Method Overview. Our method consists of three main stages: anime optical flow estimation, optical flow outpainting, and cartoon frame
outpainting.

to perceive the correlation and differences between frames,
and infer the content that can be filled in the target
area. However, limited by the model capacity, these
methods are difficult to deal with the situation where
the clues are scattered in far away frames, like video
outpainting. Therefore, during video outpainting, extracting
pixel correspondence and filling target area are better
separated as two stages, which can more flexibly use the
correspondence between pixels and enable every single
module to focus more on different tasks.

Under such principle, we have our framework with
a three-stage design. In contrast to natural videos, the
estimation of motion information in cartoon animations
often encounters more errors. To address such challenges,
our first stage is dedicated to cartoon animation optical
flow extraction. Specifically, we propose a region-based
method for cartoon animation optical flow extraction,
which enhances the performance by employing different
enhancements on lines and regions. In the second stage,
we aim at the wide-FOV motion outpainting of 16:9
bi-directional optical flows from adjacent 4:3 frame pairs
in S . The FOV extension of optical flows helps to stabilize
the frame alignment to Si, especially at the boundary
locations, as the 4:3 optical flow cannot sufficiently estimate
the motion of disappearing pixels. After that, in the third
stage, we align neighbor frames of Si in S to time i by
SoftSplat warping [42]with the outpainted 16:9 optical flows
and form a series of reference frames Ri. Commonly, the
reference frames farther away from time i shall contain more
information on the target areas, but the motion may contain
more errors to affect its alignment and vice versa. To blend
the reference frames with precision, we propose our method
of cartoon frames outpainting. The method compares all
reference frames to Si and estimates the reliability to use
a certain reference frame to fill in the extra FOV. We convert
the reliability into pixel-wise weights to blend all reference
frames to complete the FOV outpainting process. The whole
process is illustrated in Fig. 3 and we process all frames in
S individually as input to complete the whole sequence.

We will introduce these three stages in detail as follows.

3.1 Anime Optical Flow Estimation

The ideal content of the area have been repaired should
be consistent with that appeared in the video. To
obtain information from neighboring frames, some existing
methods [21], [22], [24], [41] proposed to feed multiple
frames instead of a single frame to the network. However,

Fig. 4. Our proposed region encoding method. The left part displays the
input sketch line image, the right part demonstrates the visualization of
the generated region encoding.

without explicit analysis of the motion of the objects,
these methods fail to reconstruct the large areas on the
sides (Fig. 1(d)). Some video extrapolation and inpainting
methods [23], [27], [28] use inter-frame optical flow to
estimate the motion of the objects and use it as the guidance
for pixel propagation (Fig. 1 (e)). So it is necessary to
extract the motion between frames to correspond pixels
from known to unknown. In previous studies, methods
that perceive motion based on tools like attention are
often difficult to achieve good results in outpainting, while
methods based on optical flow can gradually perceive
far-frame information through the motion information
stored in optical flow. And avoids the limitation of the
model capacity. Therefore, our method is based on optical
flow for cartoon animation outpainting.

In this stage, we focus on estimating the wide
high-quality optical flow from cartoon animations.

In recent years, deep learning methods have been
applied to motion estimation resulting in the development
of several excellent optical flow estimation methods, such
as FlowNet [43], RAFT [6], PWC-Net [44], and GMFlow
[7]. However, all these methods are designed for the
natural style videos, while they are not suitable for cartoon
animations. Unlike natural videos, cartoon animations are
typically produced by first drawing sketch lines as a
structural framework and then filling colors in different
regions. As a result, cartoon animations exhibit thicker
structural lines and contain large areas of solid colors. The
former leads to unclear motion boundaries, while the latter
often results in erroneous feature matching.

In order to reduce the optical flow mismatch caused
by the thick sketches and the lack of texture in animation
frames, we first perform feature enhancement on animation
frames by incorporating additional information from
regions and lines.
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Fig. 5. Our proposed sketch line encoding method. The left image is
the input sketch line, where Cr, Cg , and Cb separately represent the
mass centers in the original image of the channel R, G and B, and a
represents a point in the image that needs to be encoded. The encoding
of a is composed of ∠aCrCg ,∠aCgCb, and ∠aCbCr . The right image
shows the visualization of the generated line encoding.

Anime Region Enhancement: To improve the optical
flow estimation due to the lack of textures, we first use the
line drawings extracted from the cartoon animation frames
to compute the segmentation boundaries for different
regions in the input. Subsequently, we compute the distance
transformation of the line drawings for each region as the
texture coding for that target region. This texture encoding
is solely dependent on the shape and size of the region,
effectively marking unique pixels within the region with
minimal computational requirements, as shown in Fig. 4.
The distance transformation is computed as follows:

Er (a) =
||a− proj (a, L) ||√

H ∗W
+ ϵ (1)

Where a denotes a point that inner the region, L denotes the
point set of the image sketch line, proj (a, L) denotes the
projection of point a on the point set L, H and W denotes
the height and width of the image respectively, ϵ denotes a
base constant number.

Sketch Line Enhancement: The thick sketch lines in
animation frames tend to cause pixel mismatching and
tearing artifacts near the line boundaries when computing
the feature correspondence. To mitigate this problem, we
propose to re-encode line pixels within the animation frame.
Based on our practical and preliminary experiments, we find
out that there exists a motion-invariant coordinate system
that is relatively static to the objects inside the scene, and
can move along with almost the exact camera motion. This
enables a semantically identical point on the boundary to be
consistently encoded on different frames.

During the process of motion, the movement of the
image mass center often approximates the scene’s motion,
thus the image mass center is a suitable anchor point
for this coordinate system. Based on a single anchor
point, the coordinates of each point on the image can
be encoded using an angle value and a distance value
(similar to polar coordinates). However, due to the direct
correlation between the distance value and the image size,
this encoding scheme fails to maintain consistency during
common motion patterns such as image scaling. Therefore,
we extend the number of anchor points and uniquely
encode points on the sketch lines using a set of angle values
to multiple anchor points, as shown in Fig. 5.

Specifically, we calculate the mass center separately for
the different channels of the input frame in RGB color
space. The mass centers form a triplet Cr, Cg , and Cb

as anchor points to form a triangle. Denote the three

Fig. 6. Cartoon Animation Optical Flow Outpainting.

sides of the triangle as CrCg , CgCb, and CbCr , for any
point a in the image, the position of the point can be
described by the angle between the line aCr, aCg, aCb and
CrCg, CgCb, CbCr . Here, we select ∠aCrCg , ∠aCgCb, and
∠aCbCr to describe the position of a, as illustrated in Fig. 5.

We employed the following formula to combine the
results of texture enhancement and line encoding into the
original image:

Iline = Mline

(
α ∗ Iori + (1− α) ∗ El

(
Iori

))
(2)

Iregion = M̃line

(
β ∗ Iori + (1− β) ∗ Er

(
Iori

))
(3)

Iehc = Iline + Iregion (4)

where Iori denotes the original input frame, Mline is the
binary line mask to the input image, El

(
Iori

)
is the new

line encoding, Er

(
Iori

)
is the distance field generated

from Mline, Iline denotes the line enhanced image, Iregion
denotes the region texture enhanced image, Iehc is the final
enhanced image, α and β are the blending constant number.

So, we can use above enhancement combined with
the other optical flow model based on natural style data
to obtain more accurate optical flow estimate results on
animations. In our experiments, the animation optical flow
F1→2 is performed using the optical flow estimation model
RAFT [6]:

F1→2 = RAFT
(
Iehc1 , Iehc2

)
(5)

3.2 Optical Flow Outpainting
After the bidirectional optical flow of the cartoon animation
is obtained, content alignment can be performed frame
by frame to expand the field of view for each frame.
Unfortunately, during the propagation of pixels from distant
frames to the current frame, the lack of optical flow vector
guidance in the target area results in pixel loss, limiting the
expansion of the field of view to a range close to the known
regions.

To avoid losing motion guidance in the target area
during pixel propagation, it is necessary to widen
the extracted bidirectional narrow field-of-view optical
flow F . Previous methods have often used Poisson
filling (FGVC [23]) or coarse-to-fine approaches based on
neighborhood pixel inference (DFCS [19]), but Poisson
filling does not consider structural information in the image,
and neighborhood pixel inference methods struggle to
generate reliable structure for areas far from the boundaries.
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Fig. 7. Cartoon Animation stitching and align to Si

We think that structural cues in the input frame sequence
S are useful to guide optical flow outpainting. Building
on this idea, we complete optical flow outpainting through
three steps: first, we stitch the cartoon frames together and
pre-filling the target region of the current frame. Next,
we employ a pre-trained image encoder to extract cues P
from the pre-filled guidance frame IG. Finally, a U-shaped
network is employed to receive the cues P and predict
optical flow information in the target region, as shown in
Fig. 6. The details of the three parts are described as follows.

Frame Stitching and Pre-filling: Due to the rigid nature
of objects during motion, the motion boundaries in optical
flow often exhibit a high degree of consistency with the
structural information in the image. Such structural cues
can be extracted from the input frame sequence S , which
can effectively guide the restoration of optical flow F in
the target region. However, the self-contained nature of
video frames renders much of the structural information
of the scene and object in S redundant. Therefore, we
think it is critical to eliminate this redundancy and distill
the crucial visual cues that contribute to reconstructing the
optical flows beyond the original FOV. This is accomplished
by initially conducting homography-based stitching for
S , allowing for a rough but efficient affine alignment
of structures. This preliminary transformation serves as
a beneficial initialization for subsequent optical flow
reconstruction.

As shown in Fig. 7, our method first uses the middle
frame Smid ( mid = 1

2 length (S)) as the basis and stitches
all cartoon frames together by homography based on feature
matching. This can remove most redundant structural
information from cartoon frames at a low cost, and generate
a rough scene frame SC. During the process of optical flow
outpainting for a frame Si, the scene frame SC can be
aligned to the current frame and components of a pre-filled
guidance image IGi .

Structure Cues Extraction: Due to the unreasonable
structures or seams in the pre-filled guide frames, it is
necessary to predict the long-range relationship between
reliable content in the center area and the pre-filled content
on both sides. The CNN-based architecture is not suitable
for this situation. Therefore, we fine-tune a pre-trained
Swin-Transformer [45] encoder to extract structural cues.
Specifically, we use a pre-trained Swin-Transformer [45]
classification encoder to extract features at multiple scales
(1/2, 1/4 and 1/8) from the pre-filled guidance image IGa
and compose them as a guidance cue pyramid P for optical
flow outpainting.

Optical Flow Outpainting: Considering that the
structural guidance cues P contains all object structural
information, not all of these structural features will become
motion boundaries in the flow vector set Fa→b. Moreover,
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Fig. 8. The structural cue query block. The input is the optical flow
feature f1/k and the structural guidance cue P1/k. The output is the
queried and the fused feature f̂1/k. ⊗ represents multiplication with
broadcasting. ⊕ represents element-wise addition.

potential incorrect matching during the generation of the
scene frame may lead to structural errors in the structural
guidance cue. To better select the most relevant information
in P , we propose a structural cue query block to select and
filter appropriate features for Fa→b, as shown in Fig. 8.

To extend the FOV of optical flow, we first use the
U-Net downscaling blocks to compute the multiscale feature
f1/k, k ∈ (1/2, 1/4, 1/8) for the 4:3 optical flow Fa→b. For
each scale of feature f , the query block searches in the
corresponding level of the structural cue P1/k and finds the
best features through a modified Squeeze-and-Excitement
(SE) channel attention [46]. The SE block concatenates
P1/k and f1/k along the channel direction and squeezes
each channel into a single point representation. Two dense
layers further activate the squeezed vector to construct
the excitement weight vector α1/k for P1/k. The weight
vector α1/k works as the channel weight that amplifies the
information in P1/k that are directly related to the query
f1/k, to form the queried structural cue P̂1/k. Finally, the
queried structural cues are fused with f1/k as the U-Net
feature at the scale of 1/k. We illustrate the functionality
of the feature query block in Fig. 8. The final output of the
stage is refined and outpainted 16:9 version of the input
optical flow. We denote it as F̂a→b.

Training Objective: We apply the smooth L1 loss [47]
as the training objective in this stage. Note that we only
use this loss for bootstrapping purposes and will remove it
during the joint training of the whole framework, as we do
not obtain the ground truth 16:9 optical flow for our training
animations. The loss is defined as:

LOF
outpainting =

 0.5
(
F̂ − FGT

)2
if |F̂ − FGT | < 1

|F̂ − FGT | − 0.5 otherwise
(6)

where F̂ and FGT denotes the predicted optical flow and
ground truth, respectively.

3.3 Cartoon Frames Outpainting
Once the 16:9 optical flow is obtained, utilizing information
from distant frames, expansion can be achieved at a
considerable scale. Based on the outpainted 16:9 optical
flow, we align all neighboring frames St

i to time i into a
list of reference frames Rt

i, where t represents the time
difference. The alignment reveals the out-of-FOV pixels of
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Fig. 9. Cartoon Frame Outpainting.

the original 4:3 input Si, which is the key source of the frame
outpainting in the next step.

We apply the SoftSplat model [42] for frame warping
based on optical flow. Note that we only compute the
bidirectional optical flow of adjacent frames in the previous
step. To warp the frame more than 1 time step to St

i , we
warp it multiple times instead of accumulating the optical
flow for smoothness. We shall discuss the way to assemble
the reference frames with St

i to reconstruct the full 16:9 FOV
frame Ŝi in the following part.

Due to the error in optical flow estimation and
warping, the reference frames cannot be directly used for
field-of-view outpainting. A direct blending of the reference
frames may cause visual artifacts such as blurring and
noticeable seams, especially when the reference frame is far
away from the input. For the reference frames that are close
to time i, their optical flow estimation with Si are usually of
good quality due to the limited motion. However, the small
motion may not provide sufficient information to complete
the whole 16:9 FOV for outpainting. Those reference
frames far away from time i contain more information for
frame outpainting but may suffer from imprecise motion
estimation. Based on this finding, we propose the third
stage of cartoon frame outpainting to assemble all reference
frames and the input frame Si for precise FOV outpainting.
In this stage, we first learn two feature-level scores for each
reference frame to validate its reliability for outpainting. We
then use a deep neural network to convert the reliability
score to the linear fusion weights of reference frames to
blend the outpainted area. The pipeline of this stage is
illustrated in Fig. 9.

Reference Frame Reliability Estimation: We compute
two multiscale features to reflect the reference frame
reliability: an alignment feature µa to estimate the alignment
quality of the reference frame Rt

i to the input and a
smoothness feature µs to estimate the visual quality and
completeness of the reference frame. Both features are
computed in the illustration2vec (I2V) [48] encoder domain.
Compared to direct pixel-level difference estimation, the
feature-level estimation enables a higher level of semantic
understanding and comparison of image contents [27].
Additionally, the pixel-level comparison cannot handle
incomplete image compositions, for example, for the regions
outside the 4:3 FOV of the input where no ground truth
alignments exist. In comparison, the feature-level estimation
can still approximate the alignment because of the larger
receptive field. Moreover, the I2V features are tailored

Fig. 10. Visualization of the estimation of the reference frame reliability.
The blue box marks the ripping artifact which could be detected by the
smoothness score. The red box marks a successful alignment around
the 4:3 FOV boundary.

to recognize illustrations and cartoons, which are more
suitable for our task than the VGG model [49]. We extract
features from the relu2 1, relu3 2 and relu4 2 layers for
further processing. These features are on three different
scales, and we represent the feature extraction operator as
f I2V
1/k (·), where k ∈ {2, 4, 8}.

For each reference image Rt
i, we compute the alignment

feature µa based on a nonlinear mapping of the feature
differences under the I2V encoding, as:

µa
1/k

(
Rt

i

)
= NLa

1/k

(
f I2V
1/k

(
Rt

i

)
− f I2V

1/k (Si)
)
, (7)

where NLa
1/k is a two-block composition of

Conv-BN -ReLU weights for scale 1/k. We choose a
higher level of features k = 4 and 8 in the I2V encoder for a
larger receptive field for alignment estimation.

Additionally, due to the error in the previous stage of
optical flow outpainting, some pixels may be distorted or
ripped off after warping, causing discontinued local image
neighborhood (e.g., the blue box in Fig. 10). We compute the
smoothness score µs by comparing the difference between
the pixel and the mean of its local window:

µs
1/k

(
Rt

i

)
= NLs

1/k

(
f I2V
1/k

(
Rt

i

)
−Avg3×3

(
f I2V
1/k

(
Rt

i

)))
(8)

where Avgx×y is the average pooling kernel sized x × y
and NLs

1/k is another set of nonlinear mapping layers. We
choose the lower level of the I2V features by setting k = 2,
because the smoothness estimations are more fine-grained.
Especially, we add a pixel-level smoothness feature µs

1 as
the lowest level of µs:

µs
1

(
Rt

i

)
= NLs

1(Rt
i −Avg3×3(Rt

i)), (9)

We set all NLa and NLs output the same number of
channels as 16.
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Reference Frame Voting and Fusion: To convert the
multichannel feature-based score µs and µa back to the
linear blending weight for the reference frame Rt

i, we first
integrate the two scores into a single score c for each feature
scale:

c1/k
(
Rt

i

)
= NLc

1/k

(
µs
1/k

(
Rt

i

)
, µc

1/k

(
Rt

i

))
, (10)

where the NLc is a 1x1 convolution block with 16 output
channels. In some certain feature level k, there could be only
the µs or the µa feature existing. In that case, we simply
halve the input shape of the NLc layer for that scale and
keep the other settings remained.

With the multiscale reliability feature c1/k obtained, we
first upsample it to the original image scale, then fuse all
scales by linear sum. Then we compare the score c across
all reference frames Ri to compose the weight w (Rt

i) for
each specific reference frame Rt

i. Suppose that we have n
reference frames, we will have a total of 16 × n channels
to represent the reliability of all reference frames. We first
concatenate them along the channel direction and apply
multiple stacked ChannelAttn-Conv-ReLU blocks, or, in
short, the CCR blocks. The CCR blocks help to emphasize
the differences in reliability between frames for all image
locations with the channel attention mechanism [46]. We
apply a total number of CCR blocks, and the output
dimensions are 16×, 32×, 32×, and 1× of n. Finally, we
obtain n different scores w (Rt

i) for the reference frames
by replacing the activation function of the last block with
Softmax, which normalizes these weights. In this stage, we
only perform the fusion outside the 4:3 FOV, as the pixels
inside the 4:3 FOV have ground truths and are not meant to
be changed.

Under rare conditions, the fusion weights may not fully
cover the whole 16:9 frame size because the motion in the
neighbor frames of Si is too subtle to provide essential
information, or the motion is too extreme to be well
aligned. Under such circumstances, we can perform image
inpainting methods such as [50] to complete the unfilled
regions that could be computed by estimating a mask M̂i to
represent the filling status of a pixel:

M̂i = 1 if
t∏

n=−t

(1−mn
i )(1− ŵn

i ) = 1, (11)

where mn
i denotes the valid warped pixels of the reference

image Rt
i and the multiplication is the hadamard product.

Training Objective: After the bootstrapping of the
second stage, we jointly train the whole framework with
the image-level MSE loss as the only and the ultimate
supervision:

Lframe
outpainting = EM̂i

(
Ŝi − SGT

i

)2
/3, (12)

where Ŝi is the fused output frame and SGT
i is the ground

truth 16:9 FOV frame. We compute this loss over the valid
area in M̂i.

3.4 Temporal Consistency Processing

After processing frames one by one, the field of view (FOV)
of the cartoon animation is expanded, and the structural

Fig. 11. Temporal consistency processing to remove the flickering
artifact.

consistency of each frame is maintained by the motion
information. However, due to potential inconsistencies in
the color of non-local frames in the input and errors
introduced by single-frame processing, there may be some
flickering in the restored region. We use a simplified
network from blind filter [51] to eliminate this inconsistency
and apply a loss of temporal consistency [51] to constrain
the training process.

Specifically, we extract and smooth the temporal
information between two adjacent frames. Denote the
unsmoothed and time-smoothed results by E and Ŝ ,
respectively. The

(
Ŝi−1, Ei

)
and the input frame pair

(Si,Si−1) comprise the input of this model. These two
image pairs individually go through two convolutional
layers to extract image features and temporal differences.
Parameters on two paths do not share weights. Next, we
use a convolutional layer to blend the features of the two
branches and then pass five consecutive residual blocks
for processing. Finally, the temporally smoothed output
frame Ŝi is obtained through two convolutional layers
with upsampling. To maintain the outpainted structure
information after processing, skip-connections are added
between the layers shown in Fig. 11.

The temporal smooth loss [51] we used is:

LTS =
SL∑
i=2

(
λt ∗ Lt + λp ∗ Lp

)
(13)

where i denotes the time stamp on the input sequence S , SL
is the length of the sequence, λt and λp are the weights for
the temporal loss Lt and the perceptual loss of the content
Lp, respectively. Specifically, λt = 80 and λp = 1. This
combination effectively balances the reduction of temporal
flickering and the minimization of perceptual distance. A
lower λt/λp ratio causes the network’s optimization to be
predominantly driven by perceptual loss, which may induce
temporal flickering in the reconstructed regions. On the
other hand, increasing the λt/λp ratio tends to result in
excessive blurring of the output videos, thus increasing
the perceptual distance of the processed videos. This has
been demonstrated in paper [51] dealing with temporal
consistency.

We compute the temporal loss as the warping error
between the output frames:

Lt = Mi⇒i−1

(
Ŝi − f

(
Ŝi−1

))2
(14)

Mi⇒i−1 = exp(−α∥SGT
i − f

(
SGT
i−1

)
∥) (15)
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Fig. 12. Ablation Study of anime augmentation method. Improving input images with line and region-based methods can enhance the ability of
optical flow models to process anime images in various ways. And the best results are achieved when both enhancement methods are combined,
as demonstrated in the red and blue box areas of the image.

where f
(
Ŝi−1

)
is the frame Ŝi−1 warped by optical flow

Fi⇒i−1, and Mi⇒i−1 is the occlusion mask calculated from
the warping error between the ground truth frames SGT

i

and the warped ground truth frame f
(
SGT
i−1

)
. The optical

flow Fi⇒i−1 is the backward flow between SGT
i−1 and SGT

i .
We use bilinear sampling to warp frames and empirically
set α = 50 (with pixel range between [0, 1])

Since the style of cartoon animation is different from
natural style images, we use an image encoder [48]
dedicated to the classification of cartoon illustrations to
calculate the perceptual loss Lp.

Lp =
∑
l

∥∥∥ϕl

(
Ŝi

)
− ϕl

(
SGT
t

)∥∥∥
1

(16)

where l denotes the scale level in the I2V encoder, symbol
ϕl(·) denotes the feature activation at the l-th layer of the
I2V encoder, Ŝi is the temporally smoothed result and SGT

i

is the ground truth frame.

4 EXPERIMENTS

4.1 Experiment Details
Experiment Platform: Our experimental platform has an
Intel i7-7700K CPU, 32GB DDR4 memory, and NVIDIA
Geforce RTX 3090 GPU with 24GB memory.

Dataset: We collect our training data from the internet.
The dataset contains more than 1000 cartoon animation
clips of more than 40 different titles of animations.
Cartoon animations have various origins. They come from
different countries and are created in different eras. More
importantly, we carefully choose the animation clips to
cover a vast diversity of motion types, including but
not limited to camera zooming, panning, yaw and pitch

translation, subjects running, dancing, flying, and many
other visual effects. In our experiments, the frame size
is downscaled to 480 × 270, while we can still process
larger frames if necessary. To simulate 4:3 FOV, we apply
intra-frame zero-padding at the boundaries. The training
and test set are separated with a 7:3 split. Given the fact
that the essence of our approach is to leverage information
from neighboring frames to assist in outpainting the target
frame, achieving high-quality results usually necessitates a
balanced level of motion, neither static nor overly drastic.
When the motion falls within this optimal range, our dataset
size can ensure a stable outpainted result.

Data Augmentation: To improve the model’s robustness,
we conducted several data augmentations during training.
These included random horizontal and vertical image
flipping, sequence order reversal, and randomly selected
outpainting ratios ranging from 1.3 to 2.0.

Training Details: We implemented the whole framework
in PyTorch 1.8.0 with CUDA 11.0. The batch size during
training has been set to 16. We compute a total number of n
reference frames for voting and fusion for each input frame.
We employ the SGD optimizer throughout the training
process. The second stage was bootstrapped for 300 epochs,
and the learning rate was reduced from 3e-2 to 2e-5 with
an exponential decay strategy. Then we train the complete
framework for 200 epochs, and the learning rate is gradually
reduced 1e-2 to 1e-7 with the same exponential decay.

4.2 Ablation Study
4.2.1 Animation Frame Enhancement
To verify the effectiveness of the proposed frame
enhancement method for the estimation of optical flow
in anime, we performed ablation experiments on the
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Fig. 13. Ablation Study of optical flow outpainting model. The first column shows the superposition of the two frames. The second column shows
the optical flow outpainted only using the U-Net [52] network. The third column shows the results generated by the Unet and directly using the
structural clues. The fourth column shows the result obtained by adding the proposed structural clue query block while using structural clues. The
fifth column shows the pseudo-labels extracted from 16:9 input frames.

AnimeRun [53] dataset using RAFT [6] as the baseline
method.

We retrained the RAFT model on the original AnimeRun
dataset (Fig. 12 (b)), the AnimeRun dataset with sketch
line enhancement (Fig. 12 (c)), the AnimeRun dataset with
region enhancement (Fig. 12 (d)), and the AnimeRun dataset
with both sketch line and region enhancement (Fig. 12 (e)),
respectively.

In the first example, RAFT’s output contained numerous
detail errors in the wheel areas due to the unique challenges
presented by anime frames (shown in red and blue boxes).
By enhancing the image data based on sketch lines, our
method was able to better highlight the motion details in the
smaller wheel area (shown in red box), and by region-based
enhancement, the results can show good emphasis of
the motion details in the larger wheel area (shown in
blue box). In the final results, both enhancement methods
complemented each other and achieved better results than
using either method alone.

In the second example, the motion boundary of the
foreground extracted by RAFT is not clear (red box area),
which has two reasons. First, the special line characteristics
of anime images make this type of boundary area difficult
to match correctly. After enhancing the image with sketch
lines, the situation of motion boundaries is improved(red
box). Second, due to the pure color and low-texture
areas in the background, it is difficult to locate the
features, and similar areas can be found in other parts
of the background(blue box). After applying region-based
enhancement to the image, the motion boundary in the red
box and the motion situation of the pure color area in the
background are improved(blue box).

4.2.2 Optical Flow Outpainting
During the outpainting stage of optical flow, we extract
optical flow from 4:3 input cartoon frames and expand the
field of view of the optical flow based on structural clues
provided by the reference frame. To verify the effectiveness
of the model, we tested its performance under conditions
with and without structural clues.

As shown in Fig. 13, it can be seen that under
experimental conditions, structural cues can effectively
guide the optical flow restoration.

Fig. 14. Visualization of two different reliability scores. The top left image
shows the 16:9 ground truth frame of our current target frame. The blue
box parts are cropped as 4:3 input and fed into the network. The bottom
left image shows a reference frame generated by aligning neighboring
frames to the input. The top right image displays the alignment score,
while the bottom right image shows the smoothness score.

4.2.3 Reference Frames Reliability Estimation

As shown in Fig. 14, there are some alignment errors,
pixel splashing, and small holes in a single aligned
frame. Therefore, we propose two reliability scores for
this: an alignment score and a smoothness score, which
are demonstrated on the right side of Fig. 14. The
alignment score assigns higher activation levels to areas
with alignment errors, while the smoothness score assigns
higher activation levels to areas with pixel splashing and
hole edges. Furthermore, we pre-use a pixel valid mask to
mark large hole areas.

4.3 Comparison Experiments

4.3.1 Visual Comparison

We conduct a visual comparison on our test dataset
with three main competitors: the video inpainting method
E2FGVI [27], the extrapolation method FGVC [23] and the
video outpainting method [40]. The comparison results are
illustrated in Fig. 15.
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Fig. 15. Visual comparison against our competitors. The examples shown in the first through third rows demonstrate the results of cropping 16:9
cartoon animations to 4:3 as inputs. The examples in the fourth through sixth rows show the results of classic 4:3 cartoon animations as inputs
(without 16:9 ground truth). The green, red, blue, and yellow boxes mark some important areas.

We first compare our method to the video inpainting
method E2FGVI [27], and we find that their “inpainted”
results cannot fully complete the 16:9 field of view. As
shown in Fig. 15(a), most of their results suffer from the
blurring and scratch artifacts as if the field of view are
covered by a mystery mask. We believe this is because the
E2FGVI method is designed for hole filling based on the
information of surrounded pixels. In our task, the method
may find it difficult to guess the external regions by growing
the boundary pixels only.

FGVC [23] achieves competitive results among our
competitors. Their results are usually free from blurring
artifacts and manage to repair the missing FOVs for
some videos. However, we see apparent tearing, slicing
and trailing artifacts around the 4:3 FOV boundaries (as
shown in the second and the fifth examples in Fig. 15
(b)). Moreover, their results may introduce extra unwanted
objects copied from the subject, which breaks the original
video composition and may confuse the audience, as shown
in the fifth example in Fig. 15 (b). We believe this is due to
its limited motion estimation ability when processing video
sequences of enormous motion.

Among the competitors, the video outpainting method

[40] is same to our task. It expands the field of view
by separately processing the foreground and background.
However, the method uses only gradient minimization to
solve the flow value when completing the optical flow. This
leads to difficulties in predicting the motion of the repaired
area, particularly when the foreground object moves to the
edge of the frame (as shown in the third example in Fig. 15
(c)).

In sharp contrast, our method features a more advanced
cartoon animation optical flow estimation that is guided by
region information to better predict motion, which leads to
higher quality after the final blending in the extra FOV.
Thanks to the high-quality motion estimation, our results
are free from ghosting and blurring artifacts. Moreover, the
cartoon frame outpainting stage helps ensure the sharpness
and reduces the tearing and distortion artifacts in the results
(as shown in Fig. 15 (d)).

Retargeting Methods. There has been some research
on retargeting methods for changing the aspect ratio of
media content. However, most of these methods use energy
functions to evaluate the importance of each pixel and
perform uneven scaling of the objects in the image, which
can damage the structural features of the content. Compared



12

Fig. 16. The results generated by video retargeting method EFVR [5]
and our methods.

Fig. 17. The outpaint results of the Seamless Manga Inpainting [29] in
cartoon fields.

to methods of this kind, our method has significant technical
advantages. In this section, we have chosen EFVR [5] as a
representative method for retargeting to display the results.
As shown in Fig. 16, the repositioning method is challenging
to fully preserve the structural characteristics of the objects
when changing the aspect ratio.

Cartoon Fields Methods. There have been some studies
on image restoration techniques for cartoon. And the
research on manga inpainting is relatively active. However,
applying these techniques to our task is not effective due to
significant differences between the features of manga and
anime. In this section, we chose Seamless Manga Inpainting
[29] as a representative method for manga inpainting to
showcase its effectiveness in Fig. 17.

Another anime inpainting project uses anime data to
retrain image inpainting methods, such as EdgeConnect
[31], which were designed for natural images. However,
due to the differences between images and videos, these
methods cannot maintain temporal consistency when
applied to video content. Therefore, we conducted a
comparative experiment using a video inpainting method
[27] designed for natural image videos but retrained on our
anime datasets. The results are shown in Fig. 15.

4.3.2 Quantitative Comparison
The superiority of our approach is also proven with a
quantitative study shown in Table. 1. We choose PSNR,
SSIM [54], MSE, LPIPS [55], VFID [56], and flow warping
error Ewarp [51] to evaluate the performance of the relevant

TABLE 1
Quantitative evaluation of the video outpainting quality. Ewarp

∗

denotes Ewarp × 10−2.

PSNR ↑ SSIM ↑ MSE ↓ LPIPS ↓ VFID ↓ Ewarp
∗ ↓

Video Outpaint [40] 24.63 0.9688 0.0661 0.0072 0.216 0.0519
E2FGVI [27] 25.27 0.9806 0.0622 0.0038 0.211 0.0526
FGVC [23] 24.91 0.9761 0.0614 0.0058 0.266 0.0529
Ours 27.04 0.9827 0.0498 0.0036 0.188 0.0575

Fig. 18. The y-t slices of the frame sequence results are shown, where
the left side displays the ground truth frame and the green and red boxes
indicate the sampling positions for the slices. The right side displays
the slice results of the sequence, where the left half corresponds to the
green box area and the right half corresponds to the red box area.

Fig. 19. Artifacts caused by inpainting

methods. Specifically, PSNR, SSIM, and MSE are utilized
for distortion-oriented video assessment, while LPIPS and
VFID are employed for evaluating perceptual similarity
from the perspectives of images and videos, respectively.
Moreover, the flow warping error Ewarp is used to measure
temporal stability. We achieve the best scores in all metrics
except flow warping error. We believe the advantage does
not only come from our high visual quality but also a more
precise assembly of reference frames. In comparison, the
competitors may not fully recover the motion and may tend
to guess the information in the outpainting area and thus fail
to recover the ground truth frame faithfully. Furthermore,
we argue that there is an equilibrium between perceptual
distance and temporal consistency (Eq. 13), even though
the Video Outpaint method [40] has achieved the best flow
warping error, its other metrics have been much worse than
ours, which means that to ensure temporal consistency, the
model sacrifices quite a lot of image quality and faithfulness
in preserving the original image contents from the motion
priors.

4.4 Temporal Consistency
To further evaluate the performance of the method on the
entire video sequence, we experiment with video sequences
with various motion styles. Fig. 18 shows the results of the
y-t slice of the video, and more video results are shown in
the supplementary material. It can be seen that our method
has the ability to preserve temporal consistency.

4.5 Computational Efficiency Analysis
We calculate the computational efficiency on a dataset
of approximately 600 frames of cartoon animation in 10
videos. The image size of each frame is 360 × 270. The
computation time for the three subprocedures: anime optical
flow estimation, optical flow outpainting, and cartoon
frames outpainting is shown in Table 2.
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Fig. 20. Outpainting results of the cartoon video with complex camera movement. In this example, we demonstrate a challenging case with a
combination of character movement and a fast rotating camera. The frames are consecutively sampled without skipping. Our results are obtained
by the proposed outpainting approach from the center-cropped 4:3 area. The last two lines are the forward optical flow obtained from the anime
flow estimation stage and the extended forward optical flow obtained from the anime flow estimation stage, respectively.

TABLE 2
Computational efficiency analysis.

Component Time (second)

Anime optical flow estimation 0.1049
Optical flow outpainting 0.7230
Cartoon frames outpainting 18.6846
Total 19.5125

4.6 Discussions

4.6.1 Limitations
Although our approach manages to outpaint the FOV for
most of the videos, there is still a small portion of the videos
that may not be fully outpainted, as described in Sec. 3.
Firstly, if the video does not provide sufficient information
to fix the target area of all frames, we used image-based
inpainting to complete the unfilled regions. This may cause
human-observable temporal inconsistency at the corner
locations, such as Fig. 19. In addition, we find that our
method is relatively weak in processing the beginning and
ending of sequences, as the outpainting can only receive
clues from one temporal direction. Human assistance may
still be required in some of those cases.

Secondly, extending animations in a sequential manner
can be influenced by the results of earlier stages. Suppose
the predicted or extended optical flow is inaccurate, it may
result in the loss of guidance from optical flow vectors.
Consequently, this prevents the stable propagation of pixels
from neighboring frames to the current frame, hindering
the achievement of the desired outpainting results. As

illustrated in Fig. 20, When encountering rapid non-linear
camera movements, optical flow predictions sometimes fall
short of accuracy (as shown in the first frame of Fig. 20,
where the optical flow estimation on the left-hand side of
the character is problematic). This incorrect optical flow
estimation causes the error to propagate to the extended
optical flow outside the original 4:3 area, resulting in
textures and structures mistakenly appearing in the exterior
area, in addition to some distortion issues depicted in this
figure.

Finally, our proposed method is still feasible when
dealing with natural videos; however, our tailored
approaches such as sketch enhancement and region
enhancement are not optimized for natural scenes and thus
may not achieve human-preferred results on natural videos.

4.6.2 Future Work
Considering that the latest diffusion models have made
significant progress in the fields of image and video
generation, we posit that the application of diffusion
methodologies to cartoon animation outpainting represents
a highly promising avenue for research. In our future
research, we plan to explore and develop this method in
depth to further improve the quality of cartoon animation
outpainting.

5 CONCLUSION

We propose a novel cartoon animations outpainting
framework that extends the field of view of 4:3 cartoon
animations to 16:9 without any prior knowledge of the
camera or the objects. The key insight of the FOV inference
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from motion directs us to construct the three-stage design of
anime optical flow estimation, optical flow outpainting and
cartoon frames outpainting. We have achieved high-quality
artifact-free outpainting for a vast diversity of cartoon
animations with the three-stage design. Both qualitative
and quantitative experiments show that our approach
has achieved the highest output quality amongst all
state-of-the-art methods.
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